Skip to content

Mixture

BayesianGaussianMixture

Module Sklearn.​Mixture.​BayesianGaussianMixture wraps Python class sklearn.mixture.BayesianGaussianMixture.

type t

create

constructor and attributes create
val create :
  ?n_components:int ->
  ?covariance_type:[`Full | `Tied | `Diag | `Spherical] ->
  ?tol:float ->
  ?reg_covar:float ->
  ?max_iter:int ->
  ?n_init:int ->
  ?init_params:[`Kmeans | `Random] ->
  ?weight_concentration_prior_type:string ->
  ?weight_concentration_prior:float ->
  ?mean_precision_prior:float ->
  ?mean_prior:[>`ArrayLike] Np.Obj.t ->
  ?degrees_of_freedom_prior:float ->
  ?covariance_prior:[>`ArrayLike] Np.Obj.t ->
  ?random_state:int ->
  ?warm_start:bool ->
  ?verbose:int ->
  ?verbose_interval:int ->
  unit ->
  t

Variational Bayesian estimation of a Gaussian mixture.

This class allows to infer an approximate posterior distribution over the parameters of a Gaussian mixture distribution. The effective number of components can be inferred from the data.

This class implements two types of prior for the weights distribution: a finite mixture model with Dirichlet distribution and an infinite mixture model with the Dirichlet Process. In practice Dirichlet Process inference algorithm is approximated and uses a truncated distribution with a fixed maximum number of components (called the Stick-breaking representation). The number of components actually used almost always depends on the data.

.. versionadded:: 0.18

Read more in the :ref:User Guide <bgmm>.

Parameters

  • n_components : int, defaults to 1. The number of mixture components. Depending on the data and the value of the weight_concentration_prior the model can decide to not use all the components by setting some component weights_ to values very close to zero. The number of effective components is therefore smaller than n_components.

  • covariance_type : {'full', 'tied', 'diag', 'spherical'}, defaults to 'full' String describing the type of covariance parameters to use. Must be one of::

    'full' (each component has its own general covariance matrix),
    'tied' (all components share the same general covariance matrix),
    'diag' (each component has its own diagonal covariance matrix),
    'spherical' (each component has its own single variance).
    
  • tol : float, defaults to 1e-3. The convergence threshold. EM iterations will stop when the lower bound average gain on the likelihood (of the training data with respect to the model) is below this threshold.

  • reg_covar : float, defaults to 1e-6. Non-negative regularization added to the diagonal of covariance. Allows to assure that the covariance matrices are all positive.

  • max_iter : int, defaults to 100. The number of EM iterations to perform.

  • n_init : int, defaults to 1. The number of initializations to perform. The result with the highest lower bound value on the likelihood is kept.

  • init_params : {'kmeans', 'random'}, defaults to 'kmeans'. The method used to initialize the weights, the means and the covariances. Must be one of::

    'kmeans' : responsibilities are initialized using kmeans.
    'random' : responsibilities are initialized randomly.
    
  • weight_concentration_prior_type : str, defaults to 'dirichlet_process'. String describing the type of the weight concentration prior. Must be one of::

    'dirichlet_process' (using the Stick-breaking representation),
    'dirichlet_distribution' (can favor more uniform weights).
    
  • weight_concentration_prior : float | None, optional. The dirichlet concentration of each component on the weight distribution (Dirichlet). This is commonly called gamma in the literature. The higher concentration puts more mass in the center and will lead to more components being active, while a lower concentration parameter will lead to more mass at the edge of the mixture weights simplex. The value of the parameter must be greater than 0. If it is None, it's set to 1. / n_components.

  • mean_precision_prior : float | None, optional. The precision prior on the mean distribution (Gaussian). Controls the extent of where means can be placed. Larger values concentrate the cluster means around mean_prior. The value of the parameter must be greater than 0. If it is None, it is set to 1.

  • mean_prior : array-like, shape (n_features,), optional The prior on the mean distribution (Gaussian). If it is None, it is set to the mean of X.

  • degrees_of_freedom_prior : float | None, optional. The prior of the number of degrees of freedom on the covariance distributions (Wishart). If it is None, it's set to n_features.

  • covariance_prior : float or array-like, optional The prior on the covariance distribution (Wishart). If it is None, the emiprical covariance prior is initialized using the covariance of X. The shape depends on covariance_type::

        (n_features, n_features) if 'full',
        (n_features, n_features) if 'tied',
        (n_features)             if 'diag',
        float                    if 'spherical'
    
  • random_state : int, RandomState instance or None, optional (default=None) Controls the random seed given to the method chosen to initialize the parameters (see init_params). In addition, it controls the generation of random samples from the fitted distribution (see the method sample). Pass an int for reproducible output across multiple function calls.

  • See :term:Glossary <random_state>.

  • warm_start : bool, default to False. If 'warm_start' is True, the solution of the last fitting is used as initialization for the next call of fit(). This can speed up convergence when fit is called several times on similar problems.

  • See :term:the Glossary <warm_start>.

  • verbose : int, default to 0. Enable verbose output. If 1 then it prints the current initialization and each iteration step. If greater than 1 then it prints also the log probability and the time needed for each step.

  • verbose_interval : int, default to 10. Number of iteration done before the next print.

Attributes

  • weights_ : array-like, shape (n_components,) The weights of each mixture components.

  • means_ : array-like, shape (n_components, n_features) The mean of each mixture component.

  • covariances_ : array-like The covariance of each mixture component. The shape depends on covariance_type::

    (n_components,)                        if 'spherical',
    (n_features, n_features)               if 'tied',
    (n_components, n_features)             if 'diag',
    (n_components, n_features, n_features) if 'full'
    
  • precisions_ : array-like The precision matrices for each component in the mixture. A precision matrix is the inverse of a covariance matrix. A covariance matrix is symmetric positive definite so the mixture of Gaussian can be equivalently parameterized by the precision matrices. Storing the precision matrices instead of the covariance matrices makes it more efficient to compute the log-likelihood of new samples at test time. The shape depends on covariance_type::

    (n_components,)                        if 'spherical',
    (n_features, n_features)               if 'tied',
    (n_components, n_features)             if 'diag',
    (n_components, n_features, n_features) if 'full'
    
  • precisions_cholesky_ : array-like The cholesky decomposition of the precision matrices of each mixture component. A precision matrix is the inverse of a covariance matrix. A covariance matrix is symmetric positive definite so the mixture of Gaussian can be equivalently parameterized by the precision matrices. Storing the precision matrices instead of the covariance matrices makes it more efficient to compute the log-likelihood of new samples at test time. The shape depends on covariance_type::

    (n_components,)                        if 'spherical',
    (n_features, n_features)               if 'tied',
    (n_components, n_features)             if 'diag',
    (n_components, n_features, n_features) if 'full'
    
  • converged_ : bool True when convergence was reached in fit(), False otherwise.

  • n_iter_ : int Number of step used by the best fit of inference to reach the convergence.

  • lower_bound_ : float Lower bound value on the likelihood (of the training data with respect to the model) of the best fit of inference.

  • weight_concentration_prior_ : tuple or float The dirichlet concentration of each component on the weight distribution (Dirichlet). The type depends on weight_concentration_prior_type::

    (float, float) if 'dirichlet_process' (Beta parameters),
    float          if 'dirichlet_distribution' (Dirichlet parameters).
    

    The higher concentration puts more mass in the center and will lead to more components being active, while a lower concentration parameter will lead to more mass at the edge of the simplex.

  • weight_concentration_ : array-like, shape (n_components,) The dirichlet concentration of each component on the weight distribution (Dirichlet).

  • mean_precision_prior_ : float The precision prior on the mean distribution (Gaussian). Controls the extent of where means can be placed. Larger values concentrate the cluster means around mean_prior. If mean_precision_prior is set to None, mean_precision_prior_ is set to 1.

  • mean_precision_ : array-like, shape (n_components,) The precision of each components on the mean distribution (Gaussian).

  • mean_prior_ : array-like, shape (n_features,) The prior on the mean distribution (Gaussian).

  • degrees_of_freedom_prior_ : float The prior of the number of degrees of freedom on the covariance distributions (Wishart).

  • degrees_of_freedom_ : array-like, shape (n_components,) The number of degrees of freedom of each components in the model.

  • covariance_prior_ : float or array-like The prior on the covariance distribution (Wishart). The shape depends on covariance_type::

    (n_features, n_features) if 'full',
    (n_features, n_features) if 'tied',
    (n_features)             if 'diag',
    float                    if 'spherical'
    

See Also

  • GaussianMixture : Finite Gaussian mixture fit with EM.

References

.. [1] Bishop, Christopher M. (2006). 'Pattern recognition and machine learning'. Vol. 4 No. 4. New York: Springer. <https://www.springer.com/kr/book/9780387310732>_

.. [2] Hagai Attias. (2000). 'A Variational Bayesian Framework for Graphical Models'. In Advances in Neural Information Processing Systems 12. <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.2841&rep=rep1&type=pdf>_

.. [3] Blei, David M. and Michael I. Jordan. (2006). 'Variational inference for Dirichlet process mixtures'. Bayesian analysis 1.1 <https://www.cs.princeton.edu/courses/archive/fall11/cos597C/reading/BleiJordan2005.pdf>_

fit

method fit
val fit :
  ?y:Py.Object.t ->
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  t

Estimate model parameters with the EM algorithm.

The method fits the model n_init times and sets the parameters with which the model has the largest likelihood or lower bound. Within each trial, the method iterates between E-step and M-step for max_iter times until the change of likelihood or lower bound is less than tol, otherwise, a ConvergenceWarning is raised. If warm_start is True, then n_init is ignored and a single initialization is performed upon the first call. Upon consecutive calls, training starts where it left off.

Parameters

  • X : array-like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns

self

fit_predict

method fit_predict
val fit_predict :
  ?y:Py.Object.t ->
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  [>`ArrayLike] Np.Obj.t

Estimate model parameters using X and predict the labels for X.

The method fits the model n_init times and sets the parameters with which the model has the largest likelihood or lower bound. Within each trial, the method iterates between E-step and M-step for max_iter times until the change of likelihood or lower bound is less than tol, otherwise, a :class:~sklearn.exceptions.ConvergenceWarning is raised. After fitting, it predicts the most probable label for the input data points.

.. versionadded:: 0.20

Parameters

  • X : array-like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns

  • labels : array, shape (n_samples,) Component labels.

get_params

method get_params
val get_params :
  ?deep:bool ->
  [> tag] Obj.t ->
  Dict.t

Get parameters for this estimator.

Parameters

  • deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

  • params : mapping of string to any Parameter names mapped to their values.

predict

method predict
val predict :
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  [>`ArrayLike] Np.Obj.t

Predict the labels for the data samples in X using trained model.

Parameters

  • X : array-like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns

  • labels : array, shape (n_samples,) Component labels.

predict_proba

method predict_proba
val predict_proba :
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  [>`ArrayLike] Np.Obj.t

Predict posterior probability of each component given the data.

Parameters

  • X : array-like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns

  • resp : array, shape (n_samples, n_components) Returns the probability each Gaussian (state) in the model given each sample.

sample

method sample
val sample :
  ?n_samples:int ->
  [> tag] Obj.t ->
  ([>`ArrayLike] Np.Obj.t * [>`ArrayLike] Np.Obj.t)

Generate random samples from the fitted Gaussian distribution.

Parameters

  • n_samples : int, optional Number of samples to generate. Defaults to 1.

Returns

  • X : array, shape (n_samples, n_features) Randomly generated sample

  • y : array, shape (nsamples,) Component labels

score

method score
val score :
  ?y:Py.Object.t ->
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  float

Compute the per-sample average log-likelihood of the given data X.

Parameters

  • X : array-like, shape (n_samples, n_dimensions) List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns

  • log_likelihood : float Log likelihood of the Gaussian mixture given X.

score_samples

method score_samples
val score_samples :
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  [>`ArrayLike] Np.Obj.t

Compute the weighted log probabilities for each sample.

Parameters

  • X : array-like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns

  • log_prob : array, shape (n_samples,) Log probabilities of each data point in X.

set_params

method set_params
val set_params :
  ?params:(string * Py.Object.t) list ->
  [> tag] Obj.t ->
  t

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it's possible to update each component of a nested object.

Parameters

  • **params : dict Estimator parameters.

Returns

  • self : object Estimator instance.

weights_

attribute weights_
val weights_ : t -> [>`ArrayLike] Np.Obj.t
val weights_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

means_

attribute means_
val means_ : t -> [>`ArrayLike] Np.Obj.t
val means_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

covariances_

attribute covariances_
val covariances_ : t -> [>`ArrayLike] Np.Obj.t
val covariances_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

precisions_

attribute precisions_
val precisions_ : t -> [>`ArrayLike] Np.Obj.t
val precisions_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

precisions_cholesky_

attribute precisions_cholesky_
val precisions_cholesky_ : t -> [>`ArrayLike] Np.Obj.t
val precisions_cholesky_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

converged_

attribute converged_
val converged_ : t -> bool
val converged_opt : t -> (bool) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

n_iter_

attribute n_iter_
val n_iter_ : t -> int
val n_iter_opt : t -> (int) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

lower_bound_

attribute lower_bound_
val lower_bound_ : t -> float
val lower_bound_opt : t -> (float) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

weight_concentration_prior_

attribute weight_concentration_prior_
val weight_concentration_prior_ : t -> Py.Object.t
val weight_concentration_prior_opt : t -> (Py.Object.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

weight_concentration_

attribute weight_concentration_
val weight_concentration_ : t -> [>`ArrayLike] Np.Obj.t
val weight_concentration_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

mean_precision_prior_

attribute mean_precision_prior_
val mean_precision_prior_ : t -> float
val mean_precision_prior_opt : t -> (float) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

mean_precision_

attribute mean_precision_
val mean_precision_ : t -> [>`ArrayLike] Np.Obj.t
val mean_precision_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

mean_prior_

attribute mean_prior_
val mean_prior_ : t -> [>`ArrayLike] Np.Obj.t
val mean_prior_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

degrees_of_freedom_prior_

attribute degrees_of_freedom_prior_
val degrees_of_freedom_prior_ : t -> float
val degrees_of_freedom_prior_opt : t -> (float) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

degrees_of_freedom_

attribute degrees_of_freedom_
val degrees_of_freedom_ : t -> [>`ArrayLike] Np.Obj.t
val degrees_of_freedom_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

covariance_prior_

attribute covariance_prior_
val covariance_prior_ : t -> [>`ArrayLike] Np.Obj.t
val covariance_prior_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

to_string

method to_string
val to_string: t -> string

Print the object to a human-readable representation.

show

method show
val show: t -> string

Print the object to a human-readable representation.

pp

method pp
val pp: Format.formatter -> t -> unit

Pretty-print the object to a formatter.

GaussianMixture

Module Sklearn.​Mixture.​GaussianMixture wraps Python class sklearn.mixture.GaussianMixture.

type t

create

constructor and attributes create
val create :
  ?n_components:int ->
  ?covariance_type:[`Full | `Tied | `Diag | `Spherical] ->
  ?tol:float ->
  ?reg_covar:float ->
  ?max_iter:int ->
  ?n_init:int ->
  ?init_params:[`Kmeans | `Random] ->
  ?weights_init:[>`ArrayLike] Np.Obj.t ->
  ?means_init:[>`ArrayLike] Np.Obj.t ->
  ?precisions_init:[>`ArrayLike] Np.Obj.t ->
  ?random_state:int ->
  ?warm_start:bool ->
  ?verbose:int ->
  ?verbose_interval:int ->
  unit ->
  t

Gaussian Mixture.

Representation of a Gaussian mixture model probability distribution. This class allows to estimate the parameters of a Gaussian mixture distribution.

Read more in the :ref:User Guide <gmm>.

.. versionadded:: 0.18

Parameters

  • n_components : int, defaults to 1. The number of mixture components.

  • covariance_type : {'full' (default), 'tied', 'diag', 'spherical'} String describing the type of covariance parameters to use. Must be one of:

    'full' each component has its own general covariance matrix 'tied' all components share the same general covariance matrix 'diag' each component has its own diagonal covariance matrix 'spherical' each component has its own single variance

  • tol : float, defaults to 1e-3. The convergence threshold. EM iterations will stop when the lower bound average gain is below this threshold.

  • reg_covar : float, defaults to 1e-6. Non-negative regularization added to the diagonal of covariance. Allows to assure that the covariance matrices are all positive.

  • max_iter : int, defaults to 100. The number of EM iterations to perform.

  • n_init : int, defaults to 1. The number of initializations to perform. The best results are kept.

  • init_params : {'kmeans', 'random'}, defaults to 'kmeans'. The method used to initialize the weights, the means and the precisions. Must be one of::

    'kmeans' : responsibilities are initialized using kmeans.
    'random' : responsibilities are initialized randomly.
    
  • weights_init : array-like, shape (n_components, ), optional The user-provided initial weights, defaults to None. If it None, weights are initialized using the init_params method.

  • means_init : array-like, shape (n_components, n_features), optional The user-provided initial means, defaults to None, If it None, means are initialized using the init_params method.

  • precisions_init : array-like, optional. The user-provided initial precisions (inverse of the covariance matrices), defaults to None. If it None, precisions are initialized using the 'init_params' method. The shape depends on 'covariance_type'::

    (n_components,)                        if 'spherical',
    (n_features, n_features)               if 'tied',
    (n_components, n_features)             if 'diag',
    (n_components, n_features, n_features) if 'full'
    
  • random_state : int, RandomState instance or None, optional (default=None) Controls the random seed given to the method chosen to initialize the parameters (see init_params). In addition, it controls the generation of random samples from the fitted distribution (see the method sample). Pass an int for reproducible output across multiple function calls.

  • See :term:Glossary <random_state>.

  • warm_start : bool, default to False. If 'warm_start' is True, the solution of the last fitting is used as initialization for the next call of fit(). This can speed up convergence when fit is called several times on similar problems. In that case, 'n_init' is ignored and only a single initialization occurs upon the first call.

  • See :term:the Glossary <warm_start>.

  • verbose : int, default to 0. Enable verbose output. If 1 then it prints the current initialization and each iteration step. If greater than 1 then it prints also the log probability and the time needed for each step.

  • verbose_interval : int, default to 10. Number of iteration done before the next print.

Attributes

  • weights_ : array-like, shape (n_components,) The weights of each mixture components.

  • means_ : array-like, shape (n_components, n_features) The mean of each mixture component.

  • covariances_ : array-like The covariance of each mixture component. The shape depends on covariance_type::

    (n_components,)                        if 'spherical',
    (n_features, n_features)               if 'tied',
    (n_components, n_features)             if 'diag',
    (n_components, n_features, n_features) if 'full'
    
  • precisions_ : array-like The precision matrices for each component in the mixture. A precision matrix is the inverse of a covariance matrix. A covariance matrix is symmetric positive definite so the mixture of Gaussian can be equivalently parameterized by the precision matrices. Storing the precision matrices instead of the covariance matrices makes it more efficient to compute the log-likelihood of new samples at test time. The shape depends on covariance_type::

    (n_components,)                        if 'spherical',
    (n_features, n_features)               if 'tied',
    (n_components, n_features)             if 'diag',
    (n_components, n_features, n_features) if 'full'
    
  • precisions_cholesky_ : array-like The cholesky decomposition of the precision matrices of each mixture component. A precision matrix is the inverse of a covariance matrix. A covariance matrix is symmetric positive definite so the mixture of Gaussian can be equivalently parameterized by the precision matrices. Storing the precision matrices instead of the covariance matrices makes it more efficient to compute the log-likelihood of new samples at test time. The shape depends on covariance_type::

    (n_components,)                        if 'spherical',
    (n_features, n_features)               if 'tied',
    (n_components, n_features)             if 'diag',
    (n_components, n_features, n_features) if 'full'
    
  • converged_ : bool True when convergence was reached in fit(), False otherwise.

  • n_iter_ : int Number of step used by the best fit of EM to reach the convergence.

  • lower_bound_ : float Lower bound value on the log-likelihood (of the training data with respect to the model) of the best fit of EM.

See Also

  • BayesianGaussianMixture : Gaussian mixture model fit with a variational inference.

aic

method aic
val aic :
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  float

Akaike information criterion for the current model on the input X.

Parameters

  • X : array of shape (n_samples, n_dimensions)

Returns

  • aic : float The lower the better.

bic

method bic
val bic :
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  float

Bayesian information criterion for the current model on the input X.

Parameters

  • X : array of shape (n_samples, n_dimensions)

Returns

  • bic : float The lower the better.

fit

method fit
val fit :
  ?y:Py.Object.t ->
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  t

Estimate model parameters with the EM algorithm.

The method fits the model n_init times and sets the parameters with which the model has the largest likelihood or lower bound. Within each trial, the method iterates between E-step and M-step for max_iter times until the change of likelihood or lower bound is less than tol, otherwise, a ConvergenceWarning is raised. If warm_start is True, then n_init is ignored and a single initialization is performed upon the first call. Upon consecutive calls, training starts where it left off.

Parameters

  • X : array-like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns

self

fit_predict

method fit_predict
val fit_predict :
  ?y:Py.Object.t ->
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  [>`ArrayLike] Np.Obj.t

Estimate model parameters using X and predict the labels for X.

The method fits the model n_init times and sets the parameters with which the model has the largest likelihood or lower bound. Within each trial, the method iterates between E-step and M-step for max_iter times until the change of likelihood or lower bound is less than tol, otherwise, a :class:~sklearn.exceptions.ConvergenceWarning is raised. After fitting, it predicts the most probable label for the input data points.

.. versionadded:: 0.20

Parameters

  • X : array-like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns

  • labels : array, shape (n_samples,) Component labels.

get_params

method get_params
val get_params :
  ?deep:bool ->
  [> tag] Obj.t ->
  Dict.t

Get parameters for this estimator.

Parameters

  • deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

  • params : mapping of string to any Parameter names mapped to their values.

predict

method predict
val predict :
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  [>`ArrayLike] Np.Obj.t

Predict the labels for the data samples in X using trained model.

Parameters

  • X : array-like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns

  • labels : array, shape (n_samples,) Component labels.

predict_proba

method predict_proba
val predict_proba :
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  [>`ArrayLike] Np.Obj.t

Predict posterior probability of each component given the data.

Parameters

  • X : array-like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns

  • resp : array, shape (n_samples, n_components) Returns the probability each Gaussian (state) in the model given each sample.

sample

method sample
val sample :
  ?n_samples:int ->
  [> tag] Obj.t ->
  ([>`ArrayLike] Np.Obj.t * [>`ArrayLike] Np.Obj.t)

Generate random samples from the fitted Gaussian distribution.

Parameters

  • n_samples : int, optional Number of samples to generate. Defaults to 1.

Returns

  • X : array, shape (n_samples, n_features) Randomly generated sample

  • y : array, shape (nsamples,) Component labels

score

method score
val score :
  ?y:Py.Object.t ->
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  float

Compute the per-sample average log-likelihood of the given data X.

Parameters

  • X : array-like, shape (n_samples, n_dimensions) List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns

  • log_likelihood : float Log likelihood of the Gaussian mixture given X.

score_samples

method score_samples
val score_samples :
  x:[>`ArrayLike] Np.Obj.t ->
  [> tag] Obj.t ->
  [>`ArrayLike] Np.Obj.t

Compute the weighted log probabilities for each sample.

Parameters

  • X : array-like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns

  • log_prob : array, shape (n_samples,) Log probabilities of each data point in X.

set_params

method set_params
val set_params :
  ?params:(string * Py.Object.t) list ->
  [> tag] Obj.t ->
  t

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it's possible to update each component of a nested object.

Parameters

  • **params : dict Estimator parameters.

Returns

  • self : object Estimator instance.

weights_

attribute weights_
val weights_ : t -> [>`ArrayLike] Np.Obj.t
val weights_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

means_

attribute means_
val means_ : t -> [>`ArrayLike] Np.Obj.t
val means_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

covariances_

attribute covariances_
val covariances_ : t -> [>`ArrayLike] Np.Obj.t
val covariances_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

precisions_

attribute precisions_
val precisions_ : t -> [>`ArrayLike] Np.Obj.t
val precisions_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

precisions_cholesky_

attribute precisions_cholesky_
val precisions_cholesky_ : t -> [>`ArrayLike] Np.Obj.t
val precisions_cholesky_opt : t -> ([>`ArrayLike] Np.Obj.t) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

converged_

attribute converged_
val converged_ : t -> bool
val converged_opt : t -> (bool) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

n_iter_

attribute n_iter_
val n_iter_ : t -> int
val n_iter_opt : t -> (int) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

lower_bound_

attribute lower_bound_
val lower_bound_ : t -> float
val lower_bound_opt : t -> (float) option

This attribute is documented in create above. The first version raises Not_found if the attribute is None. The _opt version returns an option.

to_string

method to_string
val to_string: t -> string

Print the object to a human-readable representation.

show

method show
val show: t -> string

Print the object to a human-readable representation.

pp

method pp
val pp: Format.formatter -> t -> unit

Pretty-print the object to a formatter.